Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Oceanography is inherently an interdisciplinary science capable of producing highly complex, heterogeneous data that pose unique challenges for data management and reuse. Evolving instrumentation and new research methodologies are increasingly taxing current strategies and technologies for management and reuse of data. Data-related publisher and funder requirements are relatively new demands that researchers must learn to navigate. These are just some of the stressors that repositories experience in their role of curating and publishing FAIR marine-related data. In response, oceanographic repositories are adapting by leveraging community data standards, engaging in the development of new technologies and the usage of novel tools to improve data discovery and interoperability. Additionally, they are collaborating with data-related stakeholders to help shape data-related policy, and fill an education role to promote good data hygiene and bring awareness of concepts like FAIR to the oceanographic research community. This presentation will highlight some of the activities of the BCO-DMO repository that are aimed at advancing the availability and reuse of Open oceanographic data.more » « less
-
Ćirić, M.; Droste, M.; Pin, JÉ. (Ed.)We initiate an algebraic approach to study DNA origami structures. We identify two types of basic building blocks and describe a DNA origami structure by their composition. These building blocks are taken as generators of a monoid, called the origami monoid, and motivated by the well studied Temperley-Lieb algebras, we identify a set of relations that characterize the origami monoid. We present several observations about Green’s relations for the origami monoid and study the relations to a direct product of Jones monoids, which is a morphic image of an origami monoid.more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
-
This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible.more » « lessFree, publicly-accessible full text available April 22, 2026
An official website of the United States government

Full Text Available